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Monday 18th: Learning from data, singularity theory

Talk 1 (10:00-11:00) Machine learning, deep learning, mysteries.

• discuss the basic framework of (supervised) machine learning ML: parametrized models,
classifyiers with loss functions, train and test datasets, etc.

• introduce simple feed-forward neural networks, discuss tanh and ReLU activation func-
tions.

• briefly discuss how they are trained in practice: first-order optimization, SGD (we will
probably come back to this later)

• give an impressionistic overview of how successful deep learning has been in many do-
mains.

• explain some of the basic mysteries: why are such models trainable? Why do the trained
models generalize so well? Can we understand the computational structure of trained
models?

Talk 2 (11:00-12:00) Bayesian statistics and statistical learning theory.

• Introduce the framework of Bayesian statistics as used by Watanabe. Explain how to
work with a supervised learning ML model such as a DNN in this framework, with the
mean square error. Discuss briefly the fact that this is very different from ML practice
Refs: [?, §1.1-1.4]

• Introduce the basic quantities of statistical learning theory (which let us track how
well the model is learning) and their relationships: generalization,training and cross-
validation loss (and their averages), Kullback-Leibler divergence (empirical and aver-
aged), marginal likelihood/partition function, free energy. Point out the difference be-
tween losses and errors. Refs:[?, §1.6-1.7], omitting WAIC.

• Explain that one goal of statistical learning theory is to understand the behaviour of
the various errors in the large n limit, and how the free energy is particularly important
([?, Rmk 10 in §1.7]. One could discuss [?, Example 1.9.4] of a simple Gaussian model
where everything can be computed explicitly.

Talk 3 (13:00-14:00) Regular and singular models.

• Introduce the set of optimal parameters W0; explain why we expect the posterior dis-
tribution to concentrate along W0 and so why the “geometry” of W0, of Kn and K (in
a so far imprecise sense) should be relevant to statistical learning theory.

• Discuss identifiable and non-identifiable models, noting in particular that W0 is a point
for identifiable models. Explain that DNNs are highly non-identifiable.

• Introduce the Fisher information matrix and its link with K. Define regular and singular
models.

• State (semi-rigorously) the Bernstein-Von Mises theorem, which shows that for regular
realizable models the posterior density converges in L1-norm to a Gaussian distribution
centered at the optimal parameter. Mention that the starting point is the Laplace
approximation for integral, and sketch the proof in 1d. (NB: there is also a version of
Bernstein-Von Mises for regular non-realizable models in [?])

• Explain (maybe showing plots!) that this is very false for singular models.
• State the asymptotic free energy formula for regular models (perhaps only in the real-

izable case to keep things simple) [?, §4.2 Theorem 4]
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Q& A, discussion, break (14:00-15:00). Possible discussion topics.

• SGD vs Bayesian inference, what is known rigorously (e.g. in regular convex models)?
empirically?

Talk 4 (15:00-16:00) Analytic geometry and singularities.

• Recall definition of smooth and real-analytic functions. Explain why real-analytic func-
tions are better suited to “do geometry” (basically, their sets of solutions are reasonable
geometric objects, “generically” manifolds, unlike sets of solutions of smooth functions).
Explain why K is a real-analytic function for a tanh DNN.

• Discuss smooth and singular points of a real-analytic set (and the implicit function
theorem), and critical points of a real-analytic function.

• Define Morse and Morse-Bott functions and state the Morse-Bott lemma. Connect this
to regular/”minimally singular” statistical models.

• Define normal crossings functions and state embedded resolution of singularities for
real-analytic functions, in the form used by Watanabe. Explain how this looks like in
particular for a positive function like K.

• Briefly mention that, in practice, singularity theory for real-analytic functions can often
be reduced to singularity theory for polynomials, and so to real algebraic geometry,
which is convenient for some computations; note however that K itself is almost never
a polynomial.

Talk 5 (16:00-17:00) Measuring degeneracy with the real log-canonical threshold.

• Define the real log-canonical threshold (RLCT) or learning coefficient in terms of inte-
grability of K.

• Introduce the “density of states” (DOS) function/distribution.
• Explain roughly, using the discussion of the regular case, why understanding the asymp-

totic behaviour of the DOS close to the optimal parameters is a key step to understanding
the asymptotic behaviour of the partition function.

• Explain why the asymptotics of the DOS is closely related to the asymptotics of the
volume function, and so the RLCT as defined above. Discuss also the log term and the
multiplicity.

• Introduce the zeta function and give the characterization of the RLCT in terms of poles
(mentioning the role of the Mellin transform)

• Explain that the zeta function can be computed on a resolution of singularities and give
the resulting formula for the RLCT.

• Discuss basic properties of the RLCT, and give the formula in the minimally singular
case (K Morse-Bott).

• If there is time (!), give example of ADE singularities as a case where we can compute
the RLCT and they reflect the “complexity” of the singularity.

Tuesday 18th: Singular learning theory - the core results

Q & A and discussion (10:00-11:00). Digesting the material from Monday, before going
into the main results!

Talk 1 (11:00-12:00) Main theorem I: standard form of the log-likelihood function.
Note: for this talk, assume β = 1 (ordinary Bayesian inference) to keep things simple?

• Introduce the “relatively finite variance” condition, explain that it holds for realizable
models.

• Show that relatively finite variance implies essential uniqueness of the model along W0,
and that it implies that “f(x,w) is divisible by

√
K(w) −K0” in a neighbourhood of

the set W0 of optimal parameters.
• Use this to define the statistical process ξn on the resolution, give formulas for its

expectation and variance. Draw analogy with the central limit theorem.
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• Explain roughly what empirical process theory is about and how to deduce that ξn
converges to a Gaussian process (under some technical assumptions which we don’t
need to discuss).

Talk 2: (13:00-14:00) Main theorem II: Free energy formula. Note: again, assume
β = 1 (ordinary Bayesian inference) to keep things simple?

• Explain the simple upper bound for the expectation of the free energy [?, Theorem 6.4],
which does not use

• Explain the decomposition of the partition function in two parts, an essential part
(around W0) and a non-essential part (away from W0.)

• Explain how to bound the non-essential part.
• Explain how resolution of singularities combined with the standard form of Kn gives a

formula for the essential part in terms of the stochastic process ξn.
• Show the convergence in law of the partition function as in [?, Theorem 6.7].
• Deduce the free energy formula, both empirically and in expectation.

Talk 3 (14:15-15:15): Main theorem III : consequences for generalization errors,
singular fluctuation.

• Discuss tempered Bayesian inference (adding beta!) and the analogy with thermody-
namics.

• Recall definitions of the various errors in Bayesian learning theory, and add in the Gibbs
ones.

• Explain how to unify some of these errors with the “functional cumulant generating
function” [?, §3.3].

• State (imprecisely) the “basic theorem of Bayesian statistics” [?, §3.4 Theorem 3].
• Define the renormalized posterior distribution, show that it satisfies the “scaling law”

and define the singular fluctuation [?, §5.4 and §6.3]
• Explain how to apply the “basic theorem” in the case of SLT, using the scaling law [?,

§5.4 and §6.3].
• Deduce the main formulas about

Q& A, discussion, work in small groups: (15:15-17:00). Possible discussion topics:

• How realistic is the condition of relatively finite variance? There is at least one example
in [?, ] which does not satisfy it and where the free energy formula does not hold; can
we understand and generalize it?

• Can we understand qualitatively the next order terms in the free energy formula? Do
we expect large multiplicities to play a role? The prior only comes in the constant term,
which is very complicated; can be say something about it, perhaps by analogy with the
simple formula in the regular case?

• What does the singular fluctuation mean, really? And how should it manifest in prac-
tice?

• Can we interpret the description of the “renormalized posterior distribution” as in [?,
§6.3] as a “singular Bernstein-Von Mises theorem”? Can we recover a form of the
classical BVM theorem by applying this to regular models?

• Does SLT say something about generalization out-of-distribution?
• We haven’t discussed what Watanabe proves about maximum likelihood estimate in the

singular context, but it is interesting and someone could try to summarize it.

Wednesday 20th: Singular learning theory - consequences for phase
transitions

Talk 1 (10:00-11:00): internal model selection and phase transitions in the Bayesian
posterior. Goal: explain

• Introduce the general problem of model selection in Bayesian statistics.
• Introduce local learning coefficients.
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• Explain why the free energy formula implies phase transitions in the Bayesian posterior.
• Discuss why this can be understood as a form of “internal model selection.”

Discussion (11:00-12:00): Phase transitions in {SLT, deep learning, catastrophe
theory, condensed matter physics} and how to connect it all.

Talk 2 (13:00-14:00): Computing RLCTs with algebraic geometry.

Talk 3 (14:15-15:15): WBIC paper. Based on the paper [?], which is an important theo-
retical foundation for the paper [?] which we look at on Thursday.

• Define the WBIC
•

Q& A, discussion, work in small groups: (15:15-17:00).

Thursday 21st: Singular learning practice - estimating learning coefficients
and perspectives for interpretability.

Talk 1 (10:00-11:00) “Quantifying degeneracy in singular models via the learning
coefficient ”. Goal: present the paper [?] by Lau-Murfet-Wei.

Talk 2 (11:00-12:00) Computing λ̂ in practice and applications.

Talk 3 (13:00-14:00) DIY λ̂: libraries, internals, APIs.

Q& A, discussion, work in small groups: (14:15-17:00).
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